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Dynamics of growing interfaces in porous media with viscous fingering
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We introduce a model of a growing interface within a random porous medium in the framework of
solid-on-solid restrictions. The possibility of having viscous fingering effects is included through a height
dependent probability for the advance of the interface. The inclusion of viscous fingering effects is regu-
lated by a parameter. The temporal scaling of the interface seems to be unaffected but the spatial scaling
varies with the intensity of the fingering. In principle, although the fingering effect could always be
present in real interfaces, in porous media its intensity is very difficult to estimate.

PACS number(s): 68.10.—m, 47.55.Mh, 68.35.Fx

Recently, the scaling of driven interfaces has been the
subject of extensive studies [1]. When a fluid invades a
porous medium starting from a flat interface, an out-of-
equilibrium self-affine rough interface is generated. The
interface has been characterized through the scaling of
the interfacial width with time and lateral size. The re-
sult is the determination of two exponents 8 and a
describing the time dependent and static scaling of the
saturation width, respectively.

The self-affine interface has a characteristic scaling
function that takes the form

w(l,t)=L%f(¢t/L*B) , (1)

a being the roughness exponent because w~L% when
t>>L%P and B the dynamical exponent because w ~t?
when ¢t << L%/,

Various models have been proposed in order to explain
the experimental measured values for the exponents that
characterize the interface [2—-4]. Amaral et al. con-
sidered in particular, the influence of a gradient in the
density of pinning sites of the porous medium.

None of the proposed models takes into account the
viscosity of the invading fluid although recently, a non-
solid-on-solid (non-SOS) model has been presented and
the characteristics of the interface are studied for
different viscosity ratios [5].

We present here a SOS model very similar to the Tang
et al. [2] model, but we introduce the possibility of hav-
ing fingering effects through a height dependent growing
probability. In our model, the interface growth proceeds
in a square lattice L X H sites in which a random number
uniformly distributed among O and 1 is assigned to each
site in order to represent the porous media opposition.
The random numbers are representative of the quenched
noise of the porous media which will be a function of the
interface height but not of the time. Growth proceeds in
a strip geometry with periodic boundary conditions in the
directions parallel to the interface.

At the beginning, all columns are assumed to have the
same height equal to zero. During the growth one
column is randomly selected. The neighbor column
whose height is lower than the selected column by two or
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more units advances one. If none of the neighbor grows,
the selected column advances one unit provided that its
pressure is greater than the quenched noise of the site just
above. Otherwise no action takes place.

The concept of fingering in our model is included
through a height dependent pressure. It is well known
that the fingering phenomenon takes place through the
instabilization of flat interfaces between two viscous
fluids [6]. Roughly speaking, if in a flat interface a small
perturbation appears the pressure gradient increases at
the top of the perturbation. Then, the top of the pertur-
bation begins to move faster than the rest of the interface.
Hence the perturbation gets further ahead, which in turn
increases the pressure gradient. The entire perturbation
is, then, destabilized by the motion of the interface.

In order to include in our simulation the above de-
scribed phenomenon we express the pressure as

P(h,y)=Py+y|h(x,0)—(h(x,0)}|, )

where P(h,y) is the pressure in the selected column at
the height & (x,t), P, is the initial pressure equal to 0.66
in the simulations, ¥ is the coefficient which regulates the
fingering, h (x,?) is the height of the chosen column, and
(h(x,t)) is the average height of the interface.

In the simulations we used system sizes of L =1000
and the results are averaged over 100 runs typically. The
temporal roughness scaling and the spatial roughness are
determined. The average height of all columns is
representative of time.

In Fig. 1 several growing shapes for different values of
the y coefficients are shown. The fingering effect be-
comes evident as the y coefficient increases. The shapes
are different from the standard viscous fingering phenom-
ena due to the neighbor column interactions included in
our model.

The behavior of the surface width as a function of time
can be seen in Fig. 2 for six different values of the y
coefficient between O and 10~ 3. For ¥=0, 1X1074 and
2X 10~ * the simulations were made up to Int =8 because
the pressure is very close to the critical value and the in-
terface pins very often.
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FIG. 1. Growing shapes for (a) ¥y =0, (b) y =3X10"*, and (c)
y=4X10"*.

For ¥ =0 no fingering effect takes place and the tem-
poral scaling exponent results $==0.82. This value ap-
proaches very well previously reported results of a related
model [2]. The saturation zone is well defined for the
v =0 case.

It can be seen that as the y coefficient increases the
temporal scaling exponent 8 remains the same, at least
for the first part of the growing, but the width value at
saturation increases. In Fig. 3 the logarithm of the satu-
ration width (Q) as a function of y is plotted for ¥ be-
tween 0 and 1073, The saturation width increases initial-
ly very fast with y, but at ¥ =7X 10~ * the value of Q sat-
urates. This effect can be understood because, at great
values of 7y, i.e,. strong fingering intensity in our model,
the selected column always grows because pressure be-
comes great enough. For long times, then, the lateral
correlation effect included in the model saturates the
width. The possibility of appearance of an instability re-
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FIG. 2. Scaling of the surface width for (a) y=0, (b)
y=1X107% (c) y=2X107% (d) y=3X107% (e) y=5X107%,
() y=7X10"% (g y=8X107% and (h) y=10"3. The slope of
the first part of the plot is ==0.82.
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FIG. 3. Logarithm of the roughness value at saturation () as
a function of the parameter y.

lated with no saturation of the interface width is in this
way forbidden.

For y >0, there is a crossover region following the ini-
tial part of the growing. Within this region the rough-
ness does not show a scaling behavior. The existence of
the crossover region can be explained as a competition
between two effects, the intercolumn interaction and the
fingering process. The former tends to smooth the sur-
face while the latter tends to increase the roughness. For
lower values y the fingering process is weak and the sur-
face reaches its saturation width due to the intercolumn
interaction effect. But, the saturation width value de-
pends on y because the fingering process becomes
stronger as the y coefficient increases.

The spatial scaling of the surface roughness in the sta-
tionary regime is calculated through the so-called
height-height correlation function. The correlation func-
tion is defined as

c(rt)y={|h(r',t')—h(r'+r,t'+1)|) . (3)
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FIG. 4. Behavior of the correlation ¢ (7,0) as a function of »
for different values of y.



3272

It is known that the correlation function behaves as [7]
c(r,0)~r® 4)
for r << L, and for fixed r and short times
c(0,8)~1th . (5

The behavior of the correlation function in the station-
ary regime is shown in Fig. 4. The values of the a ex-
ponent are the slopes of the curves as log(r)—0. It can
be seen that the value of the a exponent is dependent on
the y coefficient. For ¥ =0 previous results are repro-
duced [2] with a=20.7. As the ¥ coefficient increases, the
exponent a increases up to a==0.95 for y=5X10"*
This can be explained because as the fingering effect in-
creases, the heights of the columns within a “finger” tend
to be more correlated (see interface shapes in Fig. 1).

Hence, it is not possible to characterize the interface
with only two exponents because one of them, the spatial
scaling exponent a, depends on the degree of fingering
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present. The intensity of the fingering effect depends not
only on the viscosity relation between the fluid involved
in the experiment, but also on a number of parameters
(temperature and proximity among others) which could
be very difficult to quantify.

We have studied a model of a growing interface within
a random porous media. The possibility of having
viscous fingering effects is included through a height
dependent probability for the advance of the interface.
The inclusion of viscous fingering effects is regulated by a
parameter. Although the temporal scaling of the inter-
face seems not to be affected, the spatial scaling varies
with the intensity of the fingering. In principle, the
fingering effect could always be present in real interfaces
in porous media. Nevertheless, its intensity is hard to es-
timate. The great variety of experimental a exponent
values reported up to the present could be then a result of
the influence of even small fingering effects not taken into
account in the theoretical models.
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